If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-2=142
We move all terms to the left:
6x^2-2-(142)=0
We add all the numbers together, and all the variables
6x^2-144=0
a = 6; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·6·(-144)
Δ = 3456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3456}=\sqrt{576*6}=\sqrt{576}*\sqrt{6}=24\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{6}}{2*6}=\frac{0-24\sqrt{6}}{12} =-\frac{24\sqrt{6}}{12} =-2\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{6}}{2*6}=\frac{0+24\sqrt{6}}{12} =\frac{24\sqrt{6}}{12} =2\sqrt{6} $
| .12-3a=24 | | 48=(9.6-2x)+(9.6-x)+9.6+(9.6+x)+(9.6+2x) | | -16x^2+60x+40=0 | | x*x*x*x-2*x*x*x-23x*x+24x=180 | | 3x-5(x-5)=-7+3x+12 | | 1/2x+1=1/3x-2 | | -4x=12x=3 | | 2y–1=12 | | x4+-2x3+-23x2+24x=180 | | 2x+18=5(2x+2) | | 6x-31=41 | | -6x-30=-4x-12 | | 8(2y-2)=7(3y+2) | | 5x+34+8+15=88 | | -3x-7=4(5x+4) | | 5x+4(5x-3)=-137 | | 24+2p=77 | | 28=3(x-3)+4 | | 2+3.5n=5+3.25n | | -13x+9=-5x-95 | | 6x-5=(-23) | | 48=3(3x+1) | | -6x-11=-59 | | -15=3(2x-3)+6 | | 3x+42=3(2x+3) | | 1x•1=2 | | x/3+x/2+x/7=100 | | 6x+27=7x-9=96 | | (8x)+2=(6x)-2 | | x-10÷25=-2 | | 4+32x-5=x+9 | | 2x+23=3(2x+5) |